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ABSTRACT 

 
Google Earth Engine has provided a platform to access multiple data sources in different scales, which is 

of interest to time- series analyses in general and for vegetation studies particularly. This paper demonstrated the 
potential of using this open data source for studying spatio-temporal dynamics of drought impacts. By combining 
both available simulation and remote sensing observation data, we analyzed how the impact changes due to 
differences in vegetation cover types and structure. We also discussed the limitation of the platform due to data 
availability, analysis techniques and accuracy assessment of the work. 
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1. INTRODUCTION 
 

Climate change is recognized as one of the major threats for the planet earth in the twenty-
first century, which consequences is not the change in average but the overall increase of 
extreme events (Mishra and Singh 2010). Among this, drought is one of the main subjects that 
bring a great deal of systematic study, computations of drought frequency, and investigations 
of impacts of drought on society (Wilhite and Glantz 1985). Characterizing and assessing 
drought impacts is complicated, as responses can vary in space, time, and among species (Clark 
et al. 2016). Drought impacts become most apparent when large-scale changes are observed or 
when water requirements for human or agricultural needs are not met. However, even moderate 
droughts can have long-lasting impacts on the structure and function of forests and rangelands 
without these obvious large-scale changes.  

Remote sensing is a relatively cost-effective method to monitor the condition of 
vegetation under water stress across large areas especially for such remote areas with limited 
data (Jiao et al. 2016). Development in remote sensing approaches attempts to observe direct, 
secondary, and longer-term effects of drought on vegetation. Still, most works mainly focus on 
mapping drought impacts connecting with land cover and abandoning the change in temporal 
and spatial scale in the correlation with the changes of vegetation status. Insufficient 
information to reflect the complexity of plant- and ecosystem-water interactions limited 
studying drought impacts from regional scale (using remote sensing data) to plot scale (using 
field data).  

Google Earth Engine (GEE) is a cloud-based platform for planetary-scale geospatial 
analysis that brings Google’s massive computational capabilities to bear on a variety of high-
impact societal issues including deforestation, drought, disaster, disease, food security, water 
management, climate monitoring and environmental protection (Gorelick et al. 2017). With a 
petabyte archive of Earth observations and related data and an efficient processing software, 
GEE and the available tools enables users to acquire, process, analyze, and visualize Earth 
observing data rapidly for any user-specified region across the globe without downloading and 
processing a large volume of data on the user’s desktop (Sazib et al. 2018). 
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Therefore, the objective of this paper is to demonstrate using Google Earth Engine (GEE) 
in monitoring drought impacts on vegetation. In this study, we analyzed time series of 
vegetation conditions in correlation with precipitation accumulated during the dry season of 
2016 in Dak Lak Province, Vietnam. We used Normalized Difference Vegetation Index 
(NDVI) from Landsat 8 dataset to indicate the status of vegetation since its variance over the 
time represents real responses of vegetation to climate variability (Zeng, Collatz et al. 2013). 
With a large number of remote sensing datasets in GEE acquired in long-term period, low cost, 
high frequency and broad observation, we proposed an approach to utilize GEE supporting 
managers to understand the drought impact on vegetation at a different scale.   
 
2. METHODS 
 
2.1 Study site 

 
The Central Highlands is one of eight agro-ecological regions of Vietnam as well as one 

of the most sensitive to El Niño effect, which often leads to severe drought during the dry 
season (Nguyen and Rosbjerg, 2007). With various plateaus surrounded by mountain ranges 
and inter-annual variations of rainfall mainly influenced by seasonal winds, serious drought 
has been occurring in the region, reducing the discharges of main rivers by 20-90% (NCHMF, 
2016) and has caused varying degrees of damage to agriculture and the livelihoods of people 
(CCAFS-SEA, 2016).   

 

  
 

Figure 1. Location of Central Highlands in Vietnam (left- adapted from (CCAFS-SEA, 
2016)) and Daklak Province (right- captured at GEE interface) 

 
Among the five provinces of this region, we chose Dak Lak Province as the study site as 

for its importance in agriculture production and rapid ecosystem changes. This province has 
the second largest agricultural land area (1.2 million ha). The aggregate area of annual crops is 
planted mainly with rice, vegetables and other cash crops. The perennial crops are rubber, 
coffee, black pepper and cashew. As reported by (CCAFS-SEA, 2016), this province has been 
impacted seriously during drought episodes. The reduction of crop production was estimated 
for more than 42,400 ha (nearly USD 60 million). Lack of feeds (grasses and forage) and water 
has also affected the livestock production. However, most of report was on agriculture damage 
and less information on the status of forestry. Consequently, we focused on analyzing the 
damage in the vegetation cover, especially the lag impacts in forest ecosystem with a variety 
of wood and rare animals, mainly in Yok Don National Park, Nam ka Conservation Areas, and 
Nature Reserves Eakar. 
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2.2 Collecting data from Google Earth Engine 
 
Normalized Difference Vegetation Index (NDVI) was extracted from Landsat 8 

Collection 1 Tier 1 calibrated top-of-atmosphere (TOA) reflectance (Image Collection ID -
LANDSAT/LC08/C01/T1_TOA). Calibration coefficients were extracted from the image 
metadata and the TOA computation followed Chander et al. (2009). The precipitation used to 
demonstrate the drought episode in this research was the Climate Hazards Group InfraRed 
Precipitation with Station Data (CHIRPS Pentad) version 2.0 final (Image Collection ID- 
UCSB-CHG/CHIRPS/PENTAD. This dataset is a 30+ year quasi-global rainfall dataset, 
incorporating 0.05° resolution satellite imagery with in-situ station data to create gridded 
rainfall time series for trend analysis and seasonal drought monitoring (Funk, et al 2015).  

GEE Code Editor scripts were used to extract Normalized Difference Vegetation Index 
(NDVI) data from satellite images, one for each of the study areas. The custom scripts combine 
elements from official Google resources. GEE automatically computed the NDVI and the 
precipitation of all pixels in the collection to further analyze their trends over time. We used 
time series chart function to generate time series graphs from the image collections, which 
included: corresponding image collection and satellite band data, feature collection, and the 
scale on which the reducer aggregates values over time on a per pixel basis. In this study, the 
data was scaled at 30m, resampled with the nearest neighbor algorithm. 
 
2.3 Spatio-Temporal analysis 

 
Time series analysis in Earth Engine is complicated due to the difference of pixel size, 

varying time period and missing data. As a result of these complicating factors, analyzing time 
series in Earth Engine is unlike traditional methods.  Specifically, use joins to define temporal 
relationships between collection items. Therefore, it is needed to perform preprocessing to 
reduce those issues by filtering it to the location of interest, masking clouds, and adding the 
variables in the model. 

Many traditional time series methods can be performed in GEE by mapping functions 
over joined collections. Earth Engine supports a variety of data mining methods using reducers 
from the simplest linear regression to ordinary least squares regression (OLS), robust Linear 
Regression or Principal Component Analysis (PCA). 

In this study, we used a simple linear model (equation 1) for detrending data and reducing 
stationarity in the time series (Shumway and Stoffer 2017). 

pt = β0 + β1t + et - where et is a random error                               (1) 
Also, we estimated seasonality of NDVI with a harmonic model (Shumway and Stoffer 

2017) (equation 2). To estimate the importance of terms representing seasonality or higher-
frequency harmonic behavior (e.g. double-cropping), we used an F-statistic when the model 

assumptions are satisfied.   
pt = β0 + β1t + Acos(2πωt - φ) + et                     (2) 

where et: random error, A: amplitude, ω: frequency, and φ: phase. 
  To analyzing the lag effects and dependence of time series data, we analyzed their 
correspondence between a variable and itself or a covariate during a time scale. The covariance 
of a time series refers to the dependence (specifically the covariance) of values in the time 
series at time t with values at time h = t − l, where l is the lag. The correlation is the covariance 
normalized by the standard deviations of the covariates. Specifically, the cross-covariance and 
cross-correlation at time t to previous values is useful for defining the lag effects for a variety 
of other time series analyses.  To combine image data with previous values, in GEE, we joined 
the previous values to the current values by usage of a join to create a lagged collection then 
use Pearson correlation coefficient to analyze the correlation of NDVI and precipitation.  
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3. RESULTS AND DISCUSSIONS 
 
3.1 Time series analysis of NDVI 
  

 
a) b)  
  

Figure 2. Examples of running harmonic analysis in GEE – a) The graph of original and fitted 
NDVI values- b) Map of phase and amplitude from the model coefficients in HSV (where 

phase = hue , amplitude = saturation), transformed to RGB 
 
After calculating and preprocessing, we constructed the harmonic time series of NDVI. 

Although any coefficients in the harmonic can be mapped directly, we also computed and 
mapped the phase and amplitude of the estimated harmonic model to visualize the decomposed 
time series as the sum of sinusoids at different frequencies (Shumway and Stoffer, 2017). We 
can see how the land use and land cover types in the study area were characterized by amplitude 
and phase values (figure 1-a). High amplitude indicates wide range of seasonal variation. Phase 
angle indicates the periodicity at which the peak value for the term occurs. Croplands exhibit 
a strongly unimodal periodic pattern, with a high amplitude values in successive terms. 
Grasslands have a first-term phase angle close to π, meaning that the peak greenness period is 
close to midsummer.  

Inter-annual variations in the phase values of a term, with the amplitude remaining 
unchanged, may indicate climatologically – driven variations in the time of onset of greenness 
or maximum greenness. Changes in the amplitude of a given term, with the phase value 
remaining constant, may indicate changes in land use/ land cover type or degradation of 
vegetation condition resulting from drought, flooding or over grazing (Jakubauskas, M. and 
Legates,D.,2000). We created a map displaying phase and amplitude variation over the study 
(Figure 2-b). We observed a consistent distribution of phase and amplitude of NDVI time series 
different by cover types. The agriculture land and grassland showed inter-annual changes in 
the phase values, whose phenology is driven by principally by seasonal climatic factors. 
Unexpectedly, only the woody vegetation in South regions of the area tend to have strongly 
unimodal NDVI curves with the majority of the variance in the data captured by the first 
harmonic term, while the one locating at the North showed amplitude changes in dry season, 
indicating signals of drought impacts.   
 
3.2 Lag effect analysis for different cover types 
 

By testing covariance and correlation of NDVI and accumulative precipitation amount 
in 3 scenarios: 1 month, 2 months and 3 months, we witnessed changes in both spatial 
distribution and correlation values in different land cover types (figure 3-a,b,c). The correlation 
seemed to increase in most dense vegetation covers when the lag effects increased. 
Unsurprisingly, the trend of wetlands and croplands which do not depend on precipitation as 
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the main water source did not change when lag effect changed. Grasslands and shrub-lands 
even responded strongest in the first month that the drought occurred. 

a) b) c) 

d) 
Figure 3. Changes in correlation values due to increasing lag effects in - a) 1 month –b) 2 

months – c) 3 months and d) comparisons among different vegetation cover types.  
However, vegetation structures also affected strongly to the changes in correlation in 

vegetation cover (figure 3-d). Broadleaves forests impacted water deficits less in the first two 
months and then stronger if the drought extended to the third month, while mixed forest began 
to respond after the second month of drought occur. Other vegetation covers with the mixture 
in species such as savannas reacted strongly to water deficit since the first lag month. 

4. DISCUSSIONS
Undoubtedly, Google Earth Engine Explorer is great for non-data specialists to view

datasets, embed outputs in apps, share their own data and code, and export the analysis results. 
Google Earth Engine supports cloud-based, parallelized geospatial data analysis without any 
worry about the infrastructure and parallelization decisions or local storage. GEE hosts earth 
observing images and produced datasets for precipitation, population density, topography, land 
cover and climate. Users can access GEE through different channels, including a non-
programming GUI, the JavaScript API and the Python API. Still, it has limited capabilities for 
cartography, complex spatial analysis for vector datasets as well as inaccessible parallelization. 

To conclude, the study demonstrated a simple but more effective approach to monitoring 
drought at different scales, which from that to we studied both the advantages and limitations 
of this platform. However, the massive online public data archive, as well as free cloud-based 
parallelized geospatial data analysis that GEE provided, are valuable for developing countries 
like Vietnam. It will support reducing labor-intensive, time-consuming, reproduce difficulties 
as well as compatibility limitations and enhancing usability and reproducibility of the 
analyses and results. Specifically, we recommend the establishment of a participant drought 
assessment tool based on GEE for local users to join in the monitoring and validating process 
without any request of installation and working with desktop data managing and processing 
software.  
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Figure 4. Example of participant drought assessment tool based on GEE  

 4. REFERENCES 
CGIAR Research Program on Climate Change, Agriculture and Food Security- Southeast Asia 

(CCAFS-SEA), 2016. Assessment Report: The drought crisis in the Central Highlands of 
Vietnam. Hanoi, Vietnam.  

Chander, Gyanesh, Markham, Brian L., Dennis L. Helder, Summary of current radiometric calibration 
coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sensing of 
Environment, Volume 113, Issue 5, 2009, 893-903.   

Clark, J.S., Iverson, L., Woodall, C.W., Allen, C.D., Bell, D.M., Bragg, D.C. et al. 2016 The impacts 
of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global 
Change Biology, 22 (7), 2329-2352. 

Funk, Chris, Pete Peterson, Martin Landsfeld, Diego Pedreros, James Verdin, Shraddhanand Shukla, 
Gregory Husak, James Rowland, Laura Harrison, Andrew Hoell & Joel Michaelsen. The climate 
hazards infrared precipitation with stations—a new environmental record for monitoring 
extremes. Scientific Data 2, 150066. doi:10.1038/sdata.2015.66 2015.  

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., Google Earth Engine: 
Planetary-scale geospatial analysis for everyone, Remote Sensing of Environment, Volume 202, 
2017, 18-27, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.06.031. 

Jakubauskas, M. and Legates,D.,  Harmonic analysis of time series AVHRR NDVI data for characterize 
US great plains land use/land cover, International Archives of Photogrammetry and Remote 
Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.  

Jiao, W., Zhang, L., Chang, Q., Fu, D., Cen, Y. and Tong, Q. 2016 Evaluating an Enhanced Vegetation 
Condition Index (VCI) Based on VIUPD for Drought Monitoring in the Continental United 
States. Remote Sensing, 8 (3), 224. 

Mishra, A.K. and Singh, V.P. 2010 A review of drought concepts. J. Hydrol., 391 (1–2), 202-216. 
Nguyen, T. D. and Rosbjerg, D. 2007. Coping with drought in the central highlands - Vietnam. PhD 

thesis. Institute of Environment and Resources, Technical University of Denmark.  
NCHMF. 2016. The National Center for Hydro-Meteorological Forecasting. Long term hydrological 

prediction of rivers in the Central coastal, Central Highlands and Mekong River Delta. 
Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications – 2017 With R 

Examples, Springer International Publishing AG 2017, https://doi.org/10.1007/978-3-319-
52452-8 

Sazib, N., Mladenova, I., and Bolten, J., 2018. Leveraging the Google Earth Engine for Drought 
Assessment Using Global Soil Moisture Data. Remote Sens., 10, 1265.  

Wilhite, D.A. and Glantz, M.H. 1985 Understanding: the Drought Phenomenon: The Role of 
Definitions. Water International, 10 (3), 111-120. 

https://doi.org/10.1007/978-3-319-52452-8
https://doi.org/10.1007/978-3-319-52452-8

